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SUMMARY 

The QUICKER scheme extended for non-uniform rectangular grid systems has been applied to predict the 
turbulent offset jet flows. Computational results obtained with the QUICKER scheme are compared with 
those from the skew-upwind and the hybrid schemes. Computational results include the reattachment 
length, the velocity profile, the axial velocity decay curve, and the shear stress distribution. In the sense of an 
overall agreement with the experimental data, the QUICKER scheme is found to be superior to the other 
two schemes. Boundary conditions are carefully set up to account for various flow conditions. Special 
attention has been given to the set-up of entrainment boundary condition. It is emphasized that the 
numerical diffusion due to streamline-to-grid skewness far exceeds the turbulent diffusion in offset jet flows; 
therefore, a numerical scheme that would minimize the numerical diffusion is a prerequisite for a better 
prediction of the turbulent offset jet flows. 

KEY WORDS Turbulent offset jet flow Hybrid differencing Skew-upwind differencing QUICKER differencing 
Numerical diffusion Entrainment boundary condition 

INTRODUCTION 

Offset jet is a typical flow that can be found in many engineering Bpplications, such as in 
environment dischargers, heat exchangers, fluid injector systems and combustion chambers. In an 
offset jet flow, a jet is discharged parallel to and offset from a solid wall with or without a 
secondary free stream. The flow is characterized by the longitudinal variation of streamline 
curvature, skewed impingement onto a flat surface, a recirculating region, and the development 
into a wall jet flow (Figure 1). When a numerical prediction of the flow is attempted, characteristic 
features of each component contributing to the complex flow structure must be properly taken 
into account. A recent numerical calculation of an offset jet flow performed by Yoon et al.' 
showed that the numerical scheme had a more pronounced effect on the accuracy of the solution 
than the turbulence model. Even though the flow far downstream becomes a wall jet type, the 
recirculating region just downstream of the jet exit requires an elliptic type solution procedure. 
Further, the streamline curvature in offset jet flows is in general severer than in the rearward- 
facing step flows. Therefore, it is expected that the numerical diffusion error due to streamline-to- 
grid skewness will be significant in the prediction of offset jet flows. 
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Figure 1. Offset jet flow configurations: (a) Pelfrey and Liburdy;6 (b) Hoch and Jiji’ 

An evaluation of the various discretization schemes concerning numerical diffusion based 
on the computation of turbulent, annular and twin parallel jets was carried out by Leschziner and 
Rodi.’ Pate1 and Markatos3 reported the results of their work, where the merits and drawbacks of 
eight discretization schemes were investigated in the context of the computation of laminar flows 
of a sudden expansion pipe and a lid-driven cavity. One of the conclusions was that the more 
accurate schemes were not of general applicability while the more general schemes might be too 
inaccurate. In a more general framework, the issues regarding the approximation of the 
convection term were discussed in the review article of Le~chziner;~ numerous references on the 
subject can be found therein. 

Despite its wide variety of engineering applications, efforts to numerically predict turbulent 
offset jet flows have been rare. For an accurate prediction of an offset jet flow, the problem of 
numerical diffusion associated with a strong streamline curvature has to be brought into 
attention. No previous work other than Reference 1 seems to have touched upon the issue of 
numerical diffusion in predicting turbulent offset jet flows. In this work, we attempted to 
investigate the effect of several discretization schemes for the convection term on the prediction of 
mean flow field of turbulent offset jet flows. Thus, it became necessary not to allow turbulence 
model variations in order to avoid ambiguity in interpreting the predicted results. The turbulence 
model adopted in this study was the standard k--E model as given by Launder and Spalding.’ The 
offset jet flows experimentally studied by Pelfrey and Liburdy6 and by Hoch and Jiji’ were 
computed and the computational results were compared with the available experimental data. 
Based on the comparison, the performance of the hybrid, the skew-upwind, and the QUICKER 
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schemes was evaluated. The QUICKER scheme adopted in this study is an extended version’ of 
the original QUICKER’ to non-uniform rectangular grid systems. 

MATHEMATICAL FORMULATION 

Governing equations 

The governing equations for two-dimensional, incompressible, steady turbulent flows can be 
written in a rectangular Cartesian co-ordinate system as follows, with the turbulent stresses 
substituted by eddy viscosity relations: 

continuity equation 

au av 
ax  a y  -+-=O. 

momentum equations 

where U and V are the velocities in the horizontal ( x )  and the normal ( y )  directions, respectively, p 
is the density and P the pressure. S ,  and S, are the appropriate source terms. The effective 
viscosity, peff, is given by the combination, 

Peff = P + Pt 9 (4) 

where p and p, are the laminar and the turbulent viscosities, respectively. 

Turbulence model 

The standard k-E model employed in this study adopts the eddy viscosity concept and 
determines the eddy viscosity from the values of the time-averaged turbulence kinetic energy, k, 
and its dissipation rate, E, according to 

( 5 )  
k 2  

Pt = C, P y. 
The distributions of k and E are determined from the solution of the following semi-empirical 

transport equations: 

where 

G=peff {2[r$)’+r$)’I.(-+-)’}. au av 
ay ax 
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The coefficients in the equations (5)-(7) take the following values, as given by Launder and 
S ~ a l d i n g : ~  C,  =0-09; CEI  = 1.44; C,, = 1.92; ok = 1.0; 6, = 1.3. 

As mentioned earlier, no modification of the turbulence model was attempted to draw a definite 
conclusion about the discretization schemes. The method of wall function as boundary conditions 
near the solid surface was adopted. The use of wall function for recirculating or impinging flows 
is, in fact, questionable. However, the wall function approach is normally taken for practical 
purposes, owing partly to the fact that a reliable approach to cope with separating or reattaching 
flows is not yet established. In the present computation, a two-layer approach where the inner 
layer is represented by the viscous sublayer ( y +  < 11.63) and the inertial sublayer ( y + > 1 1.63) was 
adopted as was originally implemented in TEACHT. The y +  values of the first grid points from 
the wall for the various cases of the present computation ranged from 20 to 50. 

NUMERICAL PROCEDURE 

General remarks 

The two momentum equations (2) and (3) and equations (6) and (7) describing the transport of k 
and E may be expressed in the following form: 

where 4 represents any dependent variable of interest. is the appropriate diffusivity coefficient 
for the variable 4. The source term, S,,  includes the pressure gradient terms for the momentum 
equations and encompasses the generation and the decay rate of the dependent variables for the 
transport equations for the turbulence quantities. A staggered grid system is used where the 
control volumes for U and V are centred on the faces of the control volumes for the scalar 
variables, p, k and E; the pressure nodes are located at the centre of the continuity control volume, 
which is known to suppress the wiggles or the checkboard patterns of the pressure.” 

Equation (8) is converted into its finite difference equivalent by integrating it over a control 
volume surrounding each node. For a typical grid node shown in Figure 2, a finite volume 

N 

T 
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Figure 2. Staggered grid system and control volume for each dependent variable 
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approximation to equation (8) can be expressed as 

where the A’s denote the areas of the cell faces in the four compass point directions (n, s, e, w) 
located midway between the grid nodes, and CV is the control volume surrounding the point P. 

Discretization schemes 

To express equation (9) in terms of the 4 values on the grid points surrounding the node of 
interest, the 4 profiles between any two grid points must be assumed in an appropriate manner. 
As usual, the second-order-accurate central difference approximation is used to represent the 
diffusion terms. It is the convection term that is of interest, in that its treatment can lead to the 
generation of troublesome false diffusion, which can have damaging effects on the solution 
accuracy, especially when the streamwise grid Peclet number is large. Particularly, for flows of the 
type having large longitudinal curvature like the offset jet, it is indispensable to first minimize this 
numerical diffusion for accuracy of the solution. Simply refining the grid could make it possible to 
use the non-diffusive central differencing by reducing the mesh Peclet number, which is obviously 
an expensive way in terms of computer time and storage limitations. An attractive way to 
overcome this problem is to use more complex and sophisticated discretization methods for 
convection terms. As is well known, the false diffusion is generated from two sources: (1) the 
introduction of a truncation error, which arises when the second-order-accurate central differ- 
encing method to approximate the convective transport is replaced by the first-order-accurate 
upwind differencing scheme to assure stability; (2) the skewness between the grid lines and the 
direction of the flow velocity. Especially, the false diffusion arising from the streamline-to-grid 
skewness may drastically impair the accuracy of the computation.’! In this study, three different 
differencing methods were used to approximate the convection terms: the hybrid scheme, the 
skew-upwind scheme and the QUICK scheme. The hybrid scheme, proposed by Patankar, ’ uses 
the first-order upwind difference when the grid Peclet number is greater than 2, and adopts the 
central differencing otherwise. The skew-upwind differencing scheme, proposed by Raithby,” 
considers the direction of the velocity vector and assumes a locally linear 4 profile in the cross- 
stream direction while estimating the fluxes by convection in order to reduce numerical diffusion. 
The QUICK (quadratic upstream interpolation for convection kinematics) scheme, originally 
proposed by Leonard,I3 assumes a locally parabolic polynomial distribution of 4 across the 
control volume surface at three consecutive nodal positions, two of which are located on either 
side of the surface in question and the third one on the upstream. However, the original QUICK 
formulation occasionally makes the influence coefficients of the finite difference equations 
negative, which often causes instability, as is often the case when the central differencing 
technique is employed. This is especially true when the curvature correction terms are treated as 
sources and the flow rates are relatively high. Pollard and Siu8 proposed revised formulations of 
the QUICK scheme to improve the stability property, which were referred to as the QUICK 
extended form (QUICKE) and the QUICK extended and revised form (QUICKER). Both 
formulations guaranteed the positiveness of the influence coefficients in the finite difference 
equations, and were presented only for a uniform grid system in their work. Therefore, in the 
present study, we adopted the QUICKER formulation which was modified for a non-uniform 
rectangular grid system in our previous work.9 
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1 A 

Figure 3. Nine-point configuration and length definitions of a non-uniform rectangular grid system 

The QUICKER scheme modified for a non-uniform rectangular mesh is briefly discussed 
below. The value of a convected variable on the east cell face, (6,, is expressed as follows using the 
neighbouring values shown in Figure 3: 

1 Ax AY2 
(6, = - ( (PE + CpP) -2 (CURVN,) + (CURVT,) 

2 8 24 

where 

CURVN, =CURVN(P), CURVT, =CURVT(P) if U ,  20, 

CURVN, = CURVN(E), CURVT, = CURVT(E) if U ,  <O. 

CURVN and CURVT represent the normal and the transverse curvatures of the (6 profile 
about the e surface. The detailed expression for these can be obtained in Reference 14. The 
transverse curvature effect is usually neglected for simplicity and convenience, with minor loss of 
accuracy. In this study, therefore, we also neglected the transverse curvature effect. The (6 values 
on the rest of the cell faces can be obtained similarly. However, the original QUICK formulation 
occasionally causes the influence coefficients to be negative in the finite difference equations, 
which may lead to instability. This is especially true when the curvature correction terms are 
treated as sources and the flow rates are relatively high. Integration of equation (9), with the 4 
profiles given as equation (lo), results in the following finite difference form: 

where the B s  are the influence coefficients made up of the contributions from diffusion and 
convection, and S’s are the source terms containing all the terms resulting from transforming the 
partial differential equations into their finite difference equivalents but not explicitly contained in 
equation (1  1). 

When the idea of Pollard and Siu8 (that the fractional influence coefficients be always positive) 
is applied to a non-uniform rectangular grid system shown in Figure 3, the following expressions 
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are obtained: (These expressions can easily be shown to be identical to those of Pollard and Siu 
when the grid spacing is uniform.) 

where 

M ;  =- Ci-lCiI , i=e,w,n,s Ci+ lcil M i  =- 
' 2 c i  ' 2ci  

and the Cis  represent the flow rates across the ith cell face and D, = re A,/dx,, etc. The above 
expressions for the influence coefficients treat the flow direction only by the Mi's, so that 
inconsistency and ambiguity at  the boundary cells can be removed. The source terms are given as 

and 
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Though somewhat complicated, a closer investigation of equation (12a) will show that the 
influence coefficients are always positive. In the QUICKER formulation, the linearized source 
term is lumped into a completely explicit form, so that 

s:= sf’+ st’ (b; (134 

sg=o, (1 3b) 

and 

where 4: is the current (‘in-store’) value of &. This type of explicit treatment may result in a 
longer computation time to obtain a converged solution. However, the undesirable stability 
problem when Sb is positive is always avoided. 

It should be mentioned that the skew-upwind and the QUICKER schemes were used only in 
the two momentum equations in the present study. The transport equations of turbulence 
quantities, k and E, were discretized by the hybrid differencing method, as usual, considering the 
fact that the transport equations for k and E are source-term dominated, so that values generated 
for k and E would be virtually immune to the effects of false diffusion.’ 

Code validation 

The coeficients given in equations (12a) and (12b) are somewhat complex and, thus, the 
implementation of these relations into a code is prone to coding errors. As a way to ensure that 
the code used in the present work is free from coding errors, we first computed the Blasius 
boundary layer flow. The computation was performed on a 60 x 40 (streamwise x normal) 
uniform mesh system. The predicted velocity profile at Re,=400 is shown in Figure 4. The good 
agreement between the predicted profile and the Blasius solution suggests that the present code 
works properly. 
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Figure 4. Predicted velocity profile of the Blasius flow 
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Boundary conditions 

The flow configuration of interest in this study is depicted in Figure 1. The jet flow is exhausted 
from a nozzle of width t into the surroundings, which impinges upon the bottom plate through a 
curved path, generating a recirculating region, and develops into a wall jet flow. When the 
Reynolds number based on the nozzle width is very large (generally, greater than lo4), it is known 
that the impingement distance is determined by the offset ratio. The cases computed in this study 
were the two types. The first case was the flow shown in Figure l(a), where the jet issues into a 
stagnant surroundings and the boundary above the nozzle exit is blocked by a solid wall. The 
same flow configuration was experimentally studied by Pelfrey and Liburdy6 (designated as PL 
hereinafter). The second case was the one shown in Figure l(b), where the jet issues in a co- 
flowing outer stream. In this flow configuration, the solid wall above the nozzle exit is absent. 
Therefore, the upstream entrainment property is very different from the first case. This case was 
experimentally studied by Hoch and Jiji’ (designated as HJ hereinafter). In order to predict these 
two distinct types of flow, care must be exercised in implementing the boundary conditions. For 
the first case, the Neumann boundary conditions of vanishing gradients of the dependent 
variables across both the upper entrainment and the downstream outflow boundary were 
imposed. When the boundary conditions were imposed in this manner, the continuity constraint 
became redundant for the control volume at the uppermost right corner located at the inter- 
section of the two abutting boundaries. Unless this double imposition of continuity constraint is 
removed, the TDMA (tri-diagonal matrix algorithm) would fail along either of the lines and a 
point-iterative solver would fail at this control volume.” To  overcome this problem, the level of 
pressure at this control volume, which may serve as a reference pressure, must be specified: the 
value of the pressure correction in Reference 15 was set to be zero during the solution process and, 
hence, the continuity constraint became inactive. For the second case, the specification of 
upstream boundary condition differs depending upon whether the surrounding fluid is stagnant 
or is co-flowing with a finite speed. When the surrounding fluid is stagnant, the Neumann 
boundary condition of vanishing gradients of U and V across the upstream entrainment and the 
downstream outflow boundary is a plausible approximation. From the continuity constraint, this 
amounts to specifying zero V velocity on both the upstream and the downstream boundary. 
Specification of the pressure level of the upper right corner as explained above removes the 
redundancy of the continuity constraint. The same treatment for the upper left corner, however, is 
not desirable since the pressure level can hardly be specified for two different locations. To 

V=O in this column 

pressure 
specified 

Figure 5. Boundary conditions for the offset jet flow field 
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remedy this situation, the V velocity component was set to be'zero along the upstream 
entrainment boundary, and the Vmomentum equation was solved from the next line of that edge. 
This removed the other continuity redundancy at the upstream boundary and converged 
solutions were obtained. Specification of boundary conditions for this case is illustrated in 
Figure 5. When the surrounding fluid is not stagnant and the velocity profile from the experi- 
mental data is available, the redundancy problem discussed above does not occur. In this case the 
boundary treatment similar to that for Pelfrey's experiment was sufficient for the solution 
procedure. 

The velocity profiles at the jet exit for the two cases were taken as uniform. The k and E values at 
the jet exit were assumed to be uniform, which later proved to have negligible influence on the 
downstream development of the flow. On the lower plate and near the upstream plug walls, the 
standard log-law-based wall function for smooth wall was used for the parallel velocity compon- 
ent and the turbulence quantities k and E.  

Computational details 

The solutions to equation (1 1) were obtained by adopting the SIMPLE algorithm employed in 
the general two-dimensional computer code TEACHT.' The major modifications incorporated 
in the code included the set-up of influence coefficients to account for various discretization 
schemes. In this study, iterations were continued until the residual for each equation was less than 

The offset jet flow of PL had an offset ratio, H / t ,  of 7 and the nozzle Reynolds number of 15 OOO. 
Among the various cases of HJ experiment, computation was mainly devoted to the case of the 
nozzle Reynolds number of 15000 with the nozzle thickness of 1.17 cm. The downstream and the 
top boundary of the computational domain were located at  a distance of 75 and 35 times the jet 
nozzle width, respectively. The downstream distance roughly corresponded to 4-7.5 times the 
(experimental) reattachment length and the top boundary distance to 4-1 1.7 times the offset 
height. For the case of HJ flow, the upstream entrainment boundary was located at a distance of 
one offset height from the plane of the jet exit. Most of the computational results reported in this 
work were from the computation carried out using a mesh made of 75 x 60 non-uniformly 
distributed grid lines, unless otherwise noted. A typical grid system used in the present work is 
shown in Figure 6. In the regions near the wall boundary and along the axis of the jet nozzle, finer 
grids were used to resolve steep changes of the flow variables. The leftmost portion of the grid 
system in front of the vertical wall was used for the flows of HJ and was made inactive for the PL 
case. The results of grid refinement study will be discussed later. 

0.5 x 10-3. 

COMPUTATIONAL RESULTS AND DISCUSSIONS 

As has been mentioned earlier, the offset jet flows dealt with in this study can be classified by the 
presence of free stream and the upstream wall. The overall flow picture will change according to 
these conditions. Streamline patterns for the PL and HJ flows are shown in Figures 7(a) and 7(b), 
respectively. Due to the difference in the upstream entrainment boundary, the entrained flow 
patterns differ considerably from each other. For the same offset ratio, the reattachment length of 
the PL case was found to be shorter than that of the HJ case. The shorter reattachment length of 
the PL case may be attributable to the vertically entrained flow. The reattachment length, xA, 
obtained from the experimental data of PL was about 13 times the nozzle width. The calculated 
values of xA using the three differencing schemes (hybrid, skew-upwind and QUICKER schemes) 
were 10.8, 14.2 and 13.8 times the nozzle width, respectively. The reattachment point from the 
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Figure 6. Typical grid system employed in the present computation 

(b) 
Figure 7. Streamline patterns of the offset jet flows: (a) Pelfrey and Liburdy;6 (b) Hoch and Jiji’ 

computational data was defined to be the point where the wall shear stress on the bottom plate 
vanishes, and was estimated by linear interpolation. The reattachment lengths determined either 
from the experimental data or from the numerical calculation were about 2 times the nozzle offset 
height, H. The reattachment length of the offset jet flow is, thus, much shorter than that of the 
rearward-facing step flows, which is generally known to be about 7 times the step height. The 
streamline curvature in offset jet flows is, therefore, much larger than in the rearward-facing step 
flows. The reattachment length variations with the change of offset ratio for various free stream 
conditions as experimented by HJ and the corresponding computational data are illustrated in 
Figure 8. It is seen that the predictions of the QUICKER and the skew-upwind differencing 
schemes are generally in better agreement with the experimental data than those of the hybrid 
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Figure 8. Variation of the reattachment length with offset jet height (Experimental data from Hoch and Jiji’) 

scheme. It is interesting to note that the performance of the skew-upwind differencing scheme 
deteriorates when the velocity of the external stream becomes large. The QUICKER scheme 
performs much better than the skew-upwind scheme in this case. 

Figure 9 displays the maximum axial velocity variations of the jet along the offset-jet-wall-jet 
trajectory for various offset heights in an HJ flow. As the jet impinges on the bottom wall, the 
pressure of the jet increases. Consequently, the axial velocity decays rapidly. After the reattach- 
ment, the high pressure causes the (attached) wall jet to accelerate. As the pressure relaxes to the 
ambient pressure, the maximum axial velocity of the wall jet starts to decay. This qualitative 
nature of velocity decay was well mimicked by all the three schemes. However, none of the three 
discretization schemes predicted correctly the maximum axial velocity and its development. The 
hybrid scheme resulted in a faster decay of the maximum velocity just downstream of the jet exit, 
so that the position of the local minimum in the maximum velocity distribution curve appeared 
earlier. The local minimum value was predicted rather poorly by the skew-upwind scheme. The 
performance of the QUICKER scheme also was no better than the other two. 

Figure 10 shows the profiles of the x-component velocity in the pre-attachment and the 
impingement regions for the case of PL. The predicted profiles clearly demonstrate that the skew- 
upwind and the QUICKER schemes are superior to the hybrid scheme. Perhaps, the use of the 
hybrid scheme should be discouraged. The hybrid scheme is so diffusive that the momentum of 
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Figure 9. Maximum axial velocity decay for an offset jet flow (Experimental data from Hoch and Jiji') 
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Figure 10. Streamline velocity profiles (Experimental data from Pelfrey and Liburdy6) 

the jet is transported into the recirculating region, resulting in a faster decay of the maximum 
velocity (Figure 9) and a shorter reattachment length (Figure 8). Grid dependency tests carried 
out for the QUICKER and the hybrid schemes revealed the following interesting result. In 
Figures 11 and 12, the streamwise velocity profiles at x / t = 6  computed with various grid 
arrangements are compared with one another. The QUICKER scheme virtually produced grid- 
independent velocity profiles. The velocity profiles predicted with the hybrid scheme, as seen in 
Figure 12, change continually with the grid system. It is seen that the velocity profile moves very 
slowly towards the profile obtained using the QUICKER scheme. It may be conjectured that a 
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Figure 11.  Velocity profiles with various grid arrangements (QUICKER scheme) 
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Figure 12. Velocity profiles with various grid arrangements (hybrid scheme) 

much finer grid system than those used in the present work is necessary to get a favourable 
solution. 

The wall shear stress variation in the impingement region past the reattachment point is shown 
in Figure 13. The predicted distributions differ considerably from the measured data. However, 
we see that the distributions obtained with the QUICKER and the skew-upwind schemes show a 
closer agreement with the experimental data. The discrepancy is partly due to the adoption of the 
wall function approach not suitable for reattaching flows. It is conjectured that a more refined 
near-wall treatment than the present wall function approach may improve the prediction of the 
shear stress distribution. 

The effect of numerical diffusion on the solution can be assessed when we compare the 
magnitude of the eddy viscosity and the magnitude of the numerical diffusion. The magnitude of 
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Figure 13. Shear stress distributions past the reattachment point (Experimental data from Pelfrey and Liburdy6) 

(b) 

Figure 14. Ratio of numerical diKusivity to turbulent diffusivity: (a) P L  flow; (b) HJ flow 

the numerical diffusion due to streamline-to-grid skewness associated with the first-order upwind 
differencing is given by 

I VI Ax Ay sin28 rr = 
4(Ay sin38 + AX ~ 0 ~ ~ 8 ) '  

where 8 is the skewness angle, and r, represents the numerical (artificial or false) diffusion 
coefficient." The ratio of the numerical diffusivity, Tr, to the eddy viscosity, v,, as obtained by 
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Figure 15. Ratio of numerical diffusivity to laminar diffusivity: (a) PL flow; (b) HJ flow 

using the standard k-6 model is sketched in Figure 14. For reference purposes, the contours of the 
ratio of the turbulent viscosity to the laminar viscosity are shown in Figure 15. The dashed lines 
in both figures represent the jet streamlines. The value of Tf was computed using equation (14) 
based on the velocity field given by the QUICKER solution. Thus, the distribution of Tf shown is 
not real but is sufficient for qualitative assessment. Figure 14 clearly demonstrates that the 
numerical diffusivity overwhelms the eddy viscosity in the region of curved shear layer. Rather 
poor predictions of the reattachment length, the maximum velocity decay, and the velocity 
profiles using the hybrid scheme might have been caused by the large numerical diffusion. Since 
the eddy viscosity was computed based on the k--E model, the ratio of the numerical diffusion to 
the turbulent diffusion would be somewhat different from that seen in Figure 14 if a higher-order 
turbulence model were employed. However, it is not likely that the magnitude of the turbulent 
viscosity (or its equivalent) predicted with a higher-order model will be far off from that obtained 
with the standard k--E model. Thus, we expect that the significance of large numerical diffusion 
seen in the present flow will more or less remain the same for the cases of turbulence model 
variations. 

CONCLUDING REMARKS 

Numerical calculations were carried out for the offset jet flows under various external and 
geometric conditions using the hybrid, the skew-upwind and the QUICKER schemes. Proper 
boundary conditions to account for the various flow conditions were set up. It has been shown 
that the flows of this type could not be accurately predicted by the hybrid scheme commonly 
employed in engineering practice. Of the three discretization schemes, the QUICKER scheme 
proved to give the best results. The skew-upwind scheme performed as good as the QUICKER 
scheme when the velocity of the free co-flowing stream was small. When the free-stream velocity 
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was large, the skew-upwind scheme performed rather poorly. Because of the severe streamline 
curvature of offset jet flows, care should be given to properly treat the problem of numerical 
diffusion. For example, performance test of various turbulence models can be meaningless if the 
hybrid scheme is used, owing to the overwhelming magnitude of the numerical diffusion, unless a 
very fine grid system is adopted. 
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APPENDIX: NOMENCLATURE 

area of the cell face 
influence coefficient in the finite difference equations 
flow rate crossing the ith cell face 
constants in the turbulence model 
diffusion constant across the ith cell face 
offset distance from the bottom plate to the nozzle centre line 
offset distance from the bottom plate to the lower nozzle edge 
turbulent kinetic energy 
flags for the direction of Ci 
static pressure 
source term in the x-direction momentum equation 
source term in the y-direction momentum equation 
source term in the transport equation of 4J 
nozzle width 
mean velocity in x- and y-direction, respectively 
discharge velocity of the jet 
maximum velocity along the jet axis 
reattachment length 
horizontal and normal co-ordinate, respectively 
dissipation rate of k 
numerical diffusion coefficient 
diffusivity coefficient for the transport equation of 4 
density 
turbulent Prandtl number in the k transport equation 
turbulent Prandtl number in the E transport equation 
general dependent variable 
laminar and turbulent viscosity, respectively 
effective viscosity 
laminar and turbulent kinematic viscosity, respectively 
grid spacing in x- and y-direction, respectively 
skewness angle between streamline and grid line 
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